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ABS" BACI'

Solutions to source-excited field problans are frequently represented

as superpositions of source-free field solutions. In the thexrro-viscoelastic

medium m  R;~! detrain, there are, in general, two types of rides: normal

rxxies  eigenmdes } and dissipative modes  non-eigennodes! . 'The normal

~ are eve~are finite and ~ise a corrplete orth~orrnal set. The

dissipative modes are not in general omahas of a acxrplete orthcnarmal set;

they contribute to the presence of damped resonances due to the spatial

attenuation.

In this investigation, directly integrating in the cxxrplex k dure. in, it

is shown that. the longituiinal and the transverse part af the tensor

Green's function of a theznm-viscoelastic vadium can be expressed in terms

of an appropriate undamped scalar Green's function  this represen~ the

contributions of the normal modes! which is always associated with a

separate attenuated part  this represents the contributions of the dissi-

pative modes} .



INTRODUCTION

Solutions to source-excited field problems my be represented as super-

pcsitions of source-free fieM solutions. In the thermo-viscoelastic

medium in  R;~! dcrrrain, there are in general, tm> types of mades: normal

modes  eigenmodes! and dissipative rrodes  non-eig~es! . 'Ihe normal

mcdes which are finite everywhere fcrrm a complete orthonr~al set. 'Ihe

dissipative modes are not in general members of a ccxrplete orthon~ set;

they contribute to the presence of damped resonances due to the spatial

attenuation. Ha~~er, in the finite regions, a parti cular field solution

may be represented by a s~mrposition of source free solutions as they

generally form a ccarplete arthonormal set. Such source free solutions are

defined as the norrrral rrodes of the given region; they possess a discrete

spectrum, and each mode is finite arxl sati.sfies the field equations and the

described barm~ conditions,

In the unbounded regions, as we shall see here, there exists a continu-

ous spectrum which may be associated with a discrete spectrum to all<ad an

appropriate field representations of an arbitrary function. In the presence

of a continuous spectrum, there roay also exist a set of non-rrrodal soluticns

of the source free field equations other than non-eigermMes which contri-

bute to the presence of leaky waves [l3]. Since far a conservative

 Herrnitian! system real resanant frequencies represent eigenrmdes, carrplex

resonant frequencies prescribe the non-modal soluti.ans. It shcuM be

clarified that tne ccrrrplex frequencies in a Hermitian  nonMissipative!

system do not contribute to the presence of the attenuation, whereas in

the dissipative systerrr, as izxiicated here and in [l], the oarrplex frequ-

encies cause the attenuatim. In the case of a t?mzmmviscoe3astic medium,

which is a dissipative  ncnmrxrservative! system, both the eigermoctes



 normal rxxles! and the non~getmodes fr~encies are ia general ccroplex

Here and in the subsequent investigations, we deal with the acoustic

field problem associated with the two-d~ional cross sections of open

structures. Such a structure with axis along z for cylindrical or rect;

angular coordinates  r f or spherical! possess trans lational invariance

along the axial direction, and so has an exp ik z! dependence in the z-

direction. Far a Hermitian  nonMissipative! ~um the normal mode solu-

tions correspond to real or imaginary values of k and are representatives
z

of waves either prcpagating with undecreased amplitude or evanescent with

unchangeable phase fluctuation along the z-axis. And, the non-modal

solutions correspond to cxmplex values of k and are the signs of leaky
z

waves either propagating with deer~ arrplitude or evanescent with change-

able phase fluctuation along the z-axis. The amplifies of these waves

increase indefinitely at certain directions at large distances fran the

excitations.

The plane wave properties of an unkxunded viscoelastic rredium have

been investigated by Kolsky [ll], Ewing, Jardetzky and Press �0! . The

propagation of plane Raleigh waves in a Voigt-solid  viscoelastic solid!

was discussed by Caloi [12] who gave a generalization of Rayleigh's dis-

persion relations. ~ing, et al [10!, have also ccnsidered the source

response in a liquid overlying a hcrnogeneous, ncnMissipative elastic

medium. In the present report, the tensor Green's evaluation is evaluated.

'Ibis will give us a solid foundation to prescribe the characteristics of the

acoustic response in a U.quid layer overlying a multilayered viscoelastic

rectangular, cylindrical ar spherical structures. One mare advantage of

this formulation is that the temperature effects will ocara into the picture



throuqh reversible and ixrarersible therrredynamics in a multilayer'

medium. In subsequent applicaticms, we shall consider the temperature

effects in the usual boundary value problems by azaluatinq the response

due to a point source in a liquid Layer cverlying a mulitLayered thermo-

viscoeLas tie mdium.



G.  R = r-r';~! = !!! G.  k;~!e = !!!   [�. +p p /k ! ~!!!  ,�! !!!  ,�!

~ �/~+i' -z !] = [�.3 fk ! �/C k+iuD k' �,i, !]e !

Although each of these integrands has its cion structural pararreters, the

nethcd of their evaluatian is quite similar. 'Lhe most stzaightforward

approach utilizes a spatial representation in spherical coardinates far

the arbitrary vector k is related ta the orthogonal coacdinate directions

kl, k2, k3 by the relations:

kl = k s~9cos!, k2 = k s~0sing, k3 k DGsB �!

arxi the elernanta3. volume in terms of these variables is k sinHdkdBdp.

Eq. �! reduces to

G.  
jm

6, k'+ a.a 1T, + 2''
g m ! d~-x3c~R~cos

�z! Cga +i~~2 "2   2k>+i~ k2 2 P 0

�!

After performing the integration in 0,$, and k d~~ and separating

the real eigenvalues from the corrplex ones, the tensorial Green's function

rray also be represented by the following spectral repzesemtation  see A-I!:
L.

 R'>! = d"g d" 9 �] 4J ~ !9 <"1 '1' ~ !9   <]

+ d~ ! d~ 9  <2 <2 > !9  n2'~2 ~ !9 <<2 < 2 " !

METHQ3 OF APPRCACH

The space-frequency demain representaticn of 5m tensor Green's

function of a therrro-viscoelastic mecLium is obtained by applying the inverse

spatial transforrratian of the tensor Green's funcMan in  kgb! dcElR~

we discussed in [l] .



p p'-i~p"! m YTIRf > sj -YLfRfWere [. = [ 6 e ~[e, cede, = ~ee �b!jm  ,q q �>! jm jm

After integrating with respect to the eigenvalues ![, X, X, andT T L
I   I

I we obtain G m in terms of the tr ansverse arxl 1 ongi tLdina 1 sca lar
L

Green's functions given as.

TIL T,LIwhere G ' = e ' /4~JRfG.  R,  !! = L. G g u! + D. G  I;[![!!,jm ' jm jm
l

< /C ! < f1+~' u" O'! J + l�k =   ! CT
2 [l+ ' .V"/V',! '3

[
 �/C ! < [1+~' u"/u'.! 'j

2[1+~'  V" /u' ! ']

1
[1+ l!  X" 2P" X'+2 '! ! +1 4 1+L[!  ! "+2/"/4'+2/'! ] -1 qk =   l!/C ! [ !,Y = /C![
2 [1+� Q "+2P"/! '+2P'! ] 2 [1+�!  A"+29 /4'+2P'! ~]

T T . t

= A" +A." I A" t = [ : ![ 1TP K~I + W'! �+v! /9C' �-O! '

K! + p' = A' +2p' I and 1/K~ = I/K-To, 1/c
3 t �c!

'Ihe transverse wave number k and the transverse attenuation constant. Y

derived here agrees with Exing, et al [10], p. 273, Eqs. �-100! and �-103,! .

~ +ad not derive kL or YL.

Evaluations of Eq.   ~ with or without boundaries is straight f~d

in the rectangular, cylindrical and the spherical ccxxdizate system. Hence,

in the spherical coordinate system, we express the tensor Green's function

 see references [2] and [3] ! through the spectral representation by sub-

stituting the generalized eigenvalues X to Sl and !  to S2 and the formal

evaluations of the integrals in Eq. �a! gives us the following representations:

�rr! I dSl I dS2 Gr rr';Sl , ! S' ' 2'Sl!G   ,4';S2
Y Y

  G.  9,S.! B.  O',S.] e.  e! e  e'! G  r,r';S.!

dS1 dS2 Gr ~r,r';Sl! GO  8,6 l,S2  I! $, $' iS2!27'.



! R.  r! B.  r '! y . 8,$ .! y . 8 ',S,! G   I!, t!';S .!
i j

1-L �.!' I dsi I ds2 G  r,r ';S>!G  e, !';S2,S>!G6�,6';S2!
'Y 'Y

! R  r!Q  '! j�! j  I!'!G  ';Sj,$i!
i

�!

is found to be

G  r,r';$ ! = ij  kr !h  kr !//k, ae n + 6~! > 0�!

G here denotes the solution for a region extexxUz~ urer the entire radialr

danain 0 < r < ~ . 'Jhe associated spectral representation of the identity

operator is:

r' < r-r'! = �, ! G  r,r''Sl!d$1 = �. dn�n+1! j  kr!h  kr'!   l!
2~iI ' ' 1 1 2mi n

-Q �;gdd

Similarly for G when there are no baundaries in  I} demain

G~�.4"$2! = -~> ~-IWO'I !r'2> s~>~, S, = ~'
m m

4   t!- t'! = ! c cosm  I}- I!'!1

~0

'Ihe characteristic Green's function G8 in 8 dcxein satisfies the

associated Legezx3re differential equation. In this case, there are no

where the on~ixrensional characteristic Green's functions satisfy

 d~/dr +!c Wi/r !G  r,r';Si! = -6 r r-'!; r' 6 r-r'! = 2 I dSi G = ! R  r!Ri r'!1

J

 d /d6 +S2!G6�,6'lS2! = M  t},6'! l 6    6'! = Ssr I dS2G6 = ! 6i�! 6i�'!
 d/d8 sin8d//d8 - $3//sin8 + $4sin8! G8 8,8',S3 S4! +  8-8'!

if $ is fixed, sin9'5  9-9'! = ~ I! d$3 G8 � g X  8,$4! X  O',S4!, if $3 is fixed, 

c m

6 e- !'}/sine' = - �. I dS6 GS = g 0  e,s>!S �',S>!. �!1

C

For G finite at r = 0 anal [ d//dr!-ik G ~ 0, r ~ ~, the G~'s function



boundaries in the 6 danain. 'Ihe boundary conditions on G are finiteness
6

ate=a,~.

G9 9,6';S3,S4! = -ml  n+X+1 pn  cos6 < pn aos6!/2sin n-A! vrI' n-X+1! �0!

S3 A g S4 n n+l!, pn  .6! is the associated Le~~e polynatnial of order

n, degree A, and argument 6. In order to unders~ the singularities of

G6 in either the S3 ar S4 planes, the specified values of S4 and S3,
respectively, are suitably restricted.

9 and 9' in Eq  ll! may be jnterchanged.
 niI I 9-6' f

b! A = A >0, A real and fixed, 66 ~ e /~2I  sin9sin6'!

n. = Im n, m = ~nIe,  n~ ~, $ p 0. In this case, singularities are thei$
3.

poles and they are located at S4 =  A+n!  X+n+1!, n = 0,1,2,...

6  9-6'!/sine' = -� �,! G6�,9';S3,S4! dS4 =

�  n+A! +1! r  n+2>+1! p~ >  cos9! p~ >  cos 6 ' ! /2n !
m=0

�2!

In the cylindrical coordinate system, the eigenvalues X< ~ C and
4

~ C . We therefore m.ite the general integrals in Zq. �a! in theV

f ol lying manner:

~ ~dA dQ ... I f g  u,u';C !g  v,v';c !g  z,z';C !dc dC�
1 1 y

U V

$ 4  v! !*i v'! $ ].  z! tI!.  z'!g  u,u';C . !
3. 3

The above normal rude representation in Eq. �3b! has been obtained upon

�3a!

�3b!

evaluation the integrals over the alentours y and y in Eq. �3a! . The

a! n = -4 + in,, n. real and fixed. G6 ~ tan / tan '2 ! A, A= ~A~exp i<f>!,
/2 I XI ~ ~. Singularities include the branch point at S = 0.

3
+do

sine'S 9-e'! = 2 G6 9,6';S3,S4!dS3 = � Z- dX A p  cos9!p "
I'  n-A+1! sin  n-A! vr

�1!



 t!.  z! denote the eigenfunctions in the z-demain arising frcm the eigenvalue
3

problem associated with g, C being the characteristic parameter. Hence,
z u

 d'/dz +C } g  z,z',C ! = M  z-z'}, the spectral representation is inferred

fran an integration of g in the C -plane as
z u

6.  z-z'! = !   z! g z'! = ~ I g  z,z';C ]dC
y

Alternatively, <me may deform the contour y into the contour yv< in the

acmplex C -plane to cbtain

g  il, u'; Cv! gv  v,v'; C ! gz   z, z'; C ! dC dC
yu yv

�5!

 z! >i z'! !  t! u! I!.  u'!g  v,v';g
7

Here  I! .  z! are the eigenfuncticms in the z danain arising from the eigen-
3

�6!

vaLue prcblem associated with g as the characteristic Green's function. and

C as the characteristic parameter. Far a radial Green's function f~-V

ation in the second line of Eq. �6!, g is not a function of C; instead

g as noted thereunder is a function of both C and C . In this instance,
u v

the contour y encloses the singularities of g in the C -plane, with C

treated as a fixed parameter. 'Ihe characteristic Green's function in the

radial demain is given by

 l7![�'dp} p d/dp + Cup~pjg  p p';C,C ! = <  P-p'!

'Ihen one has, instead of �5!

g u,u';C,C g  v,v';Qg  z,z';k -C !dC dCU ' u v
yu y'v

 LS!

EXVPIKS OF VARIOUS NORNS HCDE REPRESENThTI XS IN THE

RE -SANGUINE!R, M.'LIHDMCAL, AND SPHERICAL CCGRDINATE

�9a!

Similarly in cylindrical ar rectangular coordinates it can be sheen that

G p,p',z,z'! = $ $.  p! I!.   p }g  z,z';!c.! =  ~! dX dAj j z ' ' j ~~ gl ql

g< <1 <'1 <,  ~i"1, g~ «1 ~'L~<
1 1 1 1
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