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ABS"RACT

Solutiqnsl to source-excited field problems are frequently represented
as superpositions of source-free field solutions. In the thermo-viscoelastic
medium in (R;w) damain, there are, in general, two types of modes: normal
mxdes (eigenmodes) and dissipative modes (non—-eigenmodes). The normal
modes are everywhere finite and comprise a complete arthonarmal set. The
dissipative modes are not in general members of a camplete arthonormal set;
they contribute to the presence of damped resonances due to the spatial
attenuation.

In this investigation, directly integrating in the complex k damain, it
is shown that the longitidinal and the transverse part of the tensor
Green's function of a thermo-viscoelastic medium can be expressed in terms
of an appropriate undamped scalar Green's function (this representg the
contributions of the narmal modes) which is always associated with a
Separate attenuated part (this represents the contributions of the dissi-

pative modes) .



INTRODUCTTION

Solutions to source-excited field problems may be represented as super-
positions of source-free field solutions. In the thermo-viscoelastic
medium in (R;w) damain, there are in general, two types of modes: normal
modes (eigenmodes) and dissipative modes (non-eigermodes). The narmal
modes which are finite everywhere form a complete arthonormal set. The
dissipative modes are not in geheral members of a caplete orthonrmal set;
they contribute to the presence of damped resonances due to the spatial
attenuation, However, in the finite regions, a partimlar field solution
may be represented by a superposition of source free solutions as they
generally form a camplete arthonormal set. Such source free solutions are
defined as the narmal modes of the given region; they possess a discrete
spectrum, and each mxde is finite and satisfies the field equations and the
described boundary conditions.

In the unbounded regions, as we shall see here, there exists a continu—
ous spectrum which may be associated with a discrete spectrum to allow an
appropriate field representations of an arbitrary function. In the presence
of a continuous spectrum, there may also exist a set of non-modal solutians
of the source free field equations other than non-eigenmodes which contri-
bute to the presence of leaky waves [13]. Since for a conservative
(Hermitian) system real resonant frequencies represent eigenmodes, carplex
resonant frequencies prescribe the non-modal solutions. It should be
clarified that the camplex frequencies in a Hermitian (non-dissipative)
system do not contribute to the presence of the attenuation, whereas in
the dissipative system, as indicated here and in [1], the complex frequ-
encies cause the attenuation. In the case of a thermo-visceelastic medium,

which is a dissipative (non-conservative) system, both the eigenmodes



(normal modes) and the non—eigenmodes frequencies are in general complex.

Here and in the subsequent investigations, we deal with the acoustic
field problems associated with the two~dimensional cross sections of open
structures. Such a structure with axis almng z for cylindrical or rect-
angular coardinates (r far spherical) possess translational invariance
along the axial direction, and so has an e.xp(i_kzz) dependence in the z-
direction. For a Hermitian (non-dissipative) medium the normal mode solu-
tions correspord to real or imaginary values of k_ and are representatives
of waves either propagating with undecreased amplitude or evanescent with
unchangeable phase fluctuation along the z-axis. And, the non-modal
solutions carrespond to camplex values of k, and are the signs of leaky
waves either propagating with decreased amplitude or evanescent with change-
able phase fluctuation alang the z-axis. The amplitudes of these waves
increase indefinitely at certain directions at large distances from the
excitations.

The plane wave properties of an unbounded viscoelastic medium have
been investigated by Kolsky [11], Ewing, Jardetzky and Press [10]. The
propagation of plane Rayleigh waves in a Voigt-solid (viscoelastic solid)
was discussed by Caloi [12) who gave a generalization of Rayleigh's dis-
persion relations. FEwing, et al (10], have also cansidered the source
response in a liquid overlying a hamogeneous, non-dissipative elastic
medium. In the present report, the tenser Green's evaluation is evaluated.
This will give us a solid foundation to prescribe the characteristics of the
acoustic response in a liquid layer overlying a maltilayered viscoelastic
rectangular, cylindrical or spherical structures. One more advantage of

this formulation is that the temperatire effects will come into the picture



through reversible and irreversible thermodynamics in a multilayered
medium. In subsequent applications, we shall consider the temperature
effects in the usual boundary value problems by evaluating the response
due to a point source in a liguid layer overlying a mulitlayered thermo-

visogelastic medium,



METHOD OF APPRCACH
The space-frequency damain representation of the tenscr Green's
function of a thermo-viscoelastic medium is obtained by applying the inverse

spatial transformation of the tensor Green's function in (k,w) damain which

we discussed in [1]).
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Although each of these integrands has its own structural parameters, the
method of their evaluation is quite similar. The most straightfarward
__approach utilizes a Spf,t.:i‘al representatlcn in spherlcal ooordlnates far: _
the arbitrary vector K is related to the orthogcnal coardinate directions

Kis ky, ky by the relations:
kl = k sinfcos¢, k2 = k sinfsing, k3 = k cost (2)
and the elemental volume in texms of these variables is k?sinfdkdeds.

Eq. (1) reduces to
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(3)
After performing the integration in 8,4, and k domains and separating

the real eigenvalues from the complex ones, the tensorial Green's function
My alsobe represented by the following spectral representation (see A-I)
L.
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After integrating with respect to the eigenvalues )«g ' J\?] ' AE’ , and
1 1=
L . .
_.Aq_l, we cbtain Gjn 1n terms of the transverse and longitudinal scalar

Green's functions given as:
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The transverse wave number k., and the transverse attenuation constant Y
derived here agrees with Ewing, et al (10], p. 273, Egs. (5-100) and {5-101) .
They did not derive K;, o vp.

Evaluations of Eq. (43 with or without boundaries is straight farward
in the rectangular, cylindrical and the spherical coardinate system, Hence,
in the spherical coordinate system, we express the tensor Green's function
(see references [2] and [3]) through the spectral representation by sub-
stituting the generalized eigenvalues A

toslandl toSzandthefo:r:n'al

evaluations of the integrals in Eg. (4a) gives us the following representations:
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where the one-dimensional characteristic Green's functions satisfy
(dz/dr2+k2_sl/r2)Gr(rrr';Sl) = -5 (r-—r'); r'§ (x-x') = 2_3}-_{% dsl Gr - Z Rl(r)Rl('r')

1

(@%/d0%+5,) G4 (0,9'185) = 5 (0,$"); & (p=¢") = - §%I'§ dSyGy = [ 65 (8) 64 (0")

b
(d/d6 sin6d/A8 - S,/sind + S,5in6)Gy(8,0',55,8,) = -8 (8-6") ;

if S4 is fixed, sinf'S (6-8') = T §cdSB Gy = Z xm(B,S4Jxln(8',S4), if S4 is fixed,

m
. 1
) (8—9')/33-1'18' = - ETTI {c 654 GB = Z em(e's3)em(9.'83) . (6)
m‘
For G, finite at r = 0 and [(d/d::)—i.}«:_Gr + 0, r + «», the Green's function

is found to be
‘s 1
Gr(r,r‘;Sl) = l]n(k:_l.'<)l'11(1 }(lct.“))/k. Re(n + 4% >0
G, here denotes the solution for a region extending over the entire radial
damain 0 <r<w= ., The associated spectral representation of the identity
operator is:
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when there are no boundaries in ¢ domain

r'¥5{r—r') =

Similarly far G,

Gy(0r9':8,) = ~cosi(n=[¢=9'| }/2% sinim, S, = A? (8)

Singularities: sinple poles at 8, =m? , m= 0,1,2 ,
TP 2

=
o

8(9-¢") = ] € cosmig=') )
m=0

The characteristic Green's function GB in 6 daomain satisfies the

associated legerdre differential equation. In this case, there are no



boundaries in the 6 domain. The boundary conditions an Gﬂ are finiteness
at 8 =40,r .

Gy (6,6'385,5,) = =T (n+A+1)p;"(cosg )P M(oos) S2sin(n-N) nl (n-a+l)  (10)

8 = A%, S4 = n(n+l), pﬁ (8)is the associated Legendre polynomial of arder
n, degree A, and argument . In order to understand the singularities of
Ge in either the 53 or S4 planes, the specified values of 54 and S,

respectively, are suitably restricted.
6 ]

; real and fixed. Gy ~ tan’ yi/(tan"‘gf—n, = | |exp(ie),

a) n=—!5+:mi, n,

lo] <m/2, |A] » =. singularities include the branch point at Sq = 0.
jeoo
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sing'§ (p-9") = —~—r-§ G4(8,9';5,,8,)d8, = - fd)\ A {cosb)
271 y 8 3774773 PAN o Pn Fn [ (n=X+1)sin(n-A) 7
(11)
@ and 8' in Eg. (ll)maybeinterchanged.l | |
—[(n;{|8-8"
: i

b) A= A.>0, A real and fixed. Gy + e /12| (sinbsing)* ,

n, =Imn, m= |n|ei¢, In| + =, ¢ # 0. In this case, sinqularities are the
pcles and they are located at 54 = (Mn) (Mn+l), n=0,1,2,...

5 (6-6") /sing' = "(i%i"ﬁ, Gg(6,6'754,5,)ds, =
I [2(0e0) +11T (204 1) p0) (cos8)prr (cosd') /2n ! (12)
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In the cylindrical coordinate system, the eigenvalues A, - <y and

4
1

o Cyr We therefore write the general integrals in Eq. (4a) in the
1

following manner:

A

§ d,\; % d)\ll... > { % gu{u,u';Cu)gv(v,v'.;cv)gz(z,z':Cz)dCude (13a)
1 Yu Yv
* . B
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1 J

The above narmal mode representation in Egq. (13b) has been obtained upon

evaluation the integrals over the contowurs Yy @d v, in BEq. (13a). The



¢j (z) denote the eigenfunctions in the z-domain arising fram the eigenvalue
problem associated with g,+ C, being the characteristic parameter. Hence,

{dz/dzzwz)gz (z,2z',C)) = &(z-z'), the spectral representation is inferred
fram an integration of g, in the €y plane as

§(2-2') = [ $(2)9(2") = = { 9,(z.2':C,)dc, (14)
; Y
1

Alternatively, ane may deform the contour Y, into the contour vy,: in the

camplex Cyplane to cbtain

§ 4 gu{fl,u':Cu)gv(v,V‘;Cv)gé(z,Z':Cz)dCude (15}
Yo Yo
* Doy @e1(2) § o e5ttia, lv,vshyg ) (16)
i j

Here ¢i(z) are the eigenfunctions in the 2 damin arising from the eigen—
value prcblem associated with g, as the characteristic Green's function and
C, a8 the characteristic parameter. Far a radial Green's function farmul-
ation in the second line of Eq. (16), dp 1s not a function of C; instead
g, as noted thereunder is a function of both Cu and Cv‘ In this instance,
the contour vy encloses the singularities of g, in the (,-plane, with Ca
treated as a fixed parameter. The characteristic Green's function in the

radial damain is given by

[(&/dp)p d/dp + CoCy/Plg,(P,p':C,,C,) = -8 (p-p") (17)
Then one has, instead of (15)

f } 9y (eu'iCL,C g v, v C) g, (2,2 sk C ) AC AC (18}
Yy Y |

EXAMPIES OF VARIOUS NORMAL, MODE REPRESENTATICNS IN THE
RECTANGULAR, CYLINDRICAL, AND SPHERICAIL COORDINATE

Similarly in cylindrical or rectangular coordinates it can be ghown that

SBeptzz) = [ o5 (1050 5 lgy(zating) = (hp? § dagl§ ar,

gcl (le C'l'acl)gnl (nl';n 'lJ Anl)ggl (Elr g 1’ Agl) (19a)



If there are not boundaries gz(z,z' ,Kj) is evaluated to be
9,(z,2'i) = expl-ik |z-z'|]/2ix , « = (k2-E2-12) (19b)

Far unbounded space viewed as a rectangular wave guide in the normal

mode representation, we can show that in Eq. (19a),the sumation will give:

Loje)e; (0} > f dg J dn e XNy /g2 g2 2 (19¢)
i

-0 —00

With Bq. (19b) and (19c), Eq. (19a) beccmes

oo 1

; ' : 1 A b ' ]
G = (l/iﬁ?Tz)J d«E J dT] e_lg (X—x )e—lrl(Y"’Y )e"l(k —Ez—nz) |2—2 |/(k2_52_n2) (20)

In arder to obtain the cylindrical coardinate representation, we introduce
polar coordinates in both r and n space and the x-y space becames:

E =1 cosa, 1= g sina, didn = tdida, z = p cosp, y = p sing, x' = p' cos¢',

y' = p' sing’ (21}
with —e<f<e , 0 <a <2w. Thus, Eq. (20) can be written as
o 23 (zp) |
G = (~-i/8m) Z Em mm(&'¢')I dgt{Hz(ED) }Jm(CD')g(Z;Z'FC) (22)
m

me=0

In spherical coordinates, by using Egs. (5) = {12), the scalar Green's

function appropriate to transverse and longitidunal waves may be given by:

G = —%ﬁ ) e, cosm(¢-¢") ) M’:—- (2£.+l)jl(kr)hé2) (kr')P'E(oosq:)P?(cosw
g+m) 2
m 2=m (23)

It will now be useful to write the camplete expansion of Gjm in the

cylindrical coaordinate system (since we shall subsequently employ this
specific expansion in the boundary values problems involving the continental
shelf) in the region 0<§ <

2

N L'm -i|z—-z' I /k.%.-'ﬁz
G, (Riw} = -7 g cosm(¢-¢'} | dzz J_(gp)J_(zp')e / '/.ké"g
J i7i m (o}

D. -i]z-z'} Y kZ-g?
gm_ " :
N E{ iy COSM(e) | ALL 3 (E0)T, (g0t e /YR (24a)

merez—:o=l,em=2,m>l.



If we let the viscous terms A", A", and the temperature dependent term

A"t vanish, then the tensar Green's function given by Eq. (24) reduces to

. Lin ' -i]z-z'| Yk} -t?
G, (Rjw) = &~ ) € cosmw-d)')rdcc Jaee)d (gpt)e /Jk.i, -r?
Jm 4ri n 0 . e
-i|z-z"| ;/kie—?;z
+ Dy L gy cosm(e=9") | ALt 3 (LodIy (ept)e /YK =g? (25)
e} e
m

performing the integrations and summing up the series, we cbtain:
. =+ \ +
R e—:u.k.l.e|r-§' | Y _lklel;__"_r; |
G, (Rjw) = (&, -8.3 "' /k% ) _ _Jm e (26)
Jm m 3 meT Tet ol 2 >
Cipdw|r-r! | k% dr|E-2 |
where k= w/Cp and k; | = w/Cp. Eq. (26) is in agreement with Eq. (6) of

reference (g}, Note that the time dependence and source term in Eq. (26)

differ from the one given by Eq. (6) of reference [8].

In the subsequent applications, it will be shown that to determine the
response through numerical integratians in a multilayered, cylindrical
structure, we have to use Egs. (24a) and (22). 1In the case of determining
the response in a miltilayered media through the saddle paint of integrations
the appropriate Egs. (22) and (24b) involves Hankel-Bessel instead of Bessel
functions, Hence, in the region -2 <[ < =, B, (24a) becaves

-i|z~z'] \/ké‘—cz

Gy Brw)=Lyy T € cos (0-0) | dzt 1$ (zo)a(totye /871 VK22
m —
% (2) -i|z-z' | Vk]-g?
+ D, [ e cosm(¢—9') | dzg ()3 _(cp')e /8mi ¥ k2-¢2 (24b)
jm & "m Hy m

—_00
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APPENDIX I

After perfarming 6 and ¢ integrations, Eq. (3) may be given by

) BijA<

@m*Rl L, cakHup ki (C2K2+iuD k2-a?)

. o0 12 KS. +3 .3
Gjm(ﬁ;‘”) - i Jdke—lk]R}{ jm j,-r/k

(A.1)
It is useful to define the complex variable z = k, and then to write
the following integrals for a closed path of integration, including real
axis, or any other path fram —= to 4, in the complex z plane., Clearly,
these integrals are well-defined ard exponentially decreasing far z in the

lower half of the camplex z plane. Applying the residue thecrem the contour
integrals give us:

TS ~Yer|R
i % dz e lz|R|z/(21r)z|§| [Zz—(mz/C%{‘iuDT)] plu'=iwn") e TI IGT(ﬁ;m)

-iz|® ~Yo|R
i } dz e 1ZIRI/:*.(Zv)zlfﬂ (2%~ (u* /ChriuDg) ] = e 1! lGT(ﬁ;w)/wz :
. -iz|§| Zl 12 2. _.YI.-Iﬁl 2
i 3( dz e /z(2m 2 |R| [z —m"/CL+J.mDL)] =e G (Rs w) (A.2)

Here, You Yp+ kg K, G* and G” ave defined by Eq. (4c). Since ky and k.
are real then, GT(or GI"J can be represented by the follaowing spectral rep-
resentation through the one-dimensicnal characteristic Green's functiors
(see [2]):

T T T T T T .y 2
G (Riw) = § dA %dk gr {C1,8" A, g (ny,n'y o h dgr (84,8 4,4, )/ (27i)

+. o L L L ] L t L ] 2 +4 2
GL(Rrw) = } dACl % d)\nl gcl(cll; l_l;\ﬂl)gnl(nl:n 1’ lnl)ggl(ﬁl:i l:;\gl)/( mi.)
{A.3)
Substituting (A.2) and (A.3) into Eq. (A.l), we cbtain the results given

by Egs. (4a) and (4b).
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ane discussed here.






